2019 Annual Spring Conference of KSHS

Current Situations of Korean Strawberry Industry and Strawberry Transplant Propagation Using Plant Factory Technology

May 23, 2019

<u>Changhoo Chun¹</u> and Seon Woo Park² ¹Seoul National University, Korea ²Yonam College, Korea

Strawberry industry in Korea (in 2017)

- 209,000 tons (Fruit yield)
- 1.2 billion USD (Production value)

Whole sale price

- Season is critical (earlier and earlier!!) for fruit price.
- Competition with Korean melon & watermelon after March
- Almost 100% in greenhouses

Multi-layered plastic greenhouses for strawberry production

- + Water curtain system
- +/- Heating systems (boilers and/or heat pumps)

Predominant Korean-bred Cultivars

40 domestic cultivars were bred and registered since 2004.

Establishment of Propagation and distribution system in Korea

• Operated since 2011, a public-private cooperative system

Propagation and distribution system for domestic cultivars in Korea

- It requires ca. 600 million transplants per year.
- It is necessary to establish a rapid propagation and distribution system, <u>especially when new promising</u> <u>cultivars are bred</u>.

Conventional propagation methods

Low propagation rate of transplants in the conventional methods (25-30 transplants from a mother plant per year) is a major problem for rapid distribution of newly-bred cultivars.

Structural and functional elements of PFAL (Plant Factory using Artificial Lighting)

- Thermally insulated warehouselike structure
- Multiple racks (ca. 40 cm between racks vertically) equipped with lighting devices
- Air conditioning facilities
- CO₂ delivery system
- Fans for circulating room air
- Nutrient solution delivery system

PFAL for strawberry transplant production (S-PFAL system)

Seoul National Univ., Korea

S-PFAL for producing elite and pre-basic transplants

Photoperiod

Long day condition (photoperiod of 16 h d⁻¹)

Hancock, 1999

Air temperature

Warm air temperature (air temperature of 26/23°C, photo- / dark periods)

Hancock, 1999

Light intensity

PPF of 240 µmol·m⁻²·s⁻¹

PPF levels

CO₂ concentration

CO₂ concentration of 900 µmol·mol⁻¹

CO ₂ (ppm)	Runner number per plant	Total runner length per plant (cm)	Average runner length (cm)	Daily growth of runner length (cm plant ⁻¹ d ⁻¹)	Daughter plant number per plant
300	4 ± 1d	164.5 ± 12.8d	45.4 ± 5.1a	3.29 ± 0.26d	2 ± 1b
450	6 ± 1c	258.1 ± 19.3c	43.5 ± 4.9a	5.16 ± 0.39c	4 ± 1c
600	8 ± 1b	351.7 ± 15.1b	42.3 ± 1.6a	7.03 ± 0.30b	6 ± 1b
750	10 ± 2a	419.1 ± 70.6a	43.2 ± 5.3a	8.38 ± 1.41a	8 ± 1a
900	11 ± 2a	465.4 ± 61.0a	44.9 ± 3.7a	9.31 ± 1.22a	9 ± 2a
R	0.942	0.942	-0.045	0.942	0.960

Fertigation

- Sub-irrigation for ca. 10 minutes, twice a day
- Modified Yamazaki's nutrient solution for strawberry (2 N, 1.5 P, 3 K, 2 Ca, 1 Mg, and 1 S me·L⁻¹; 0.7 mS·cm⁻¹)

Chun et al, 2011

Can a young runner plant autotrophically grow?

Earliest time to separate runner plant from propagule?

- Runner is a passage of carbohydrates, water and nutrients from its mother plant to the runner plant.
- When can the young runner plant autotrophically grow after being separated from its propagule?

Autotrophic growth -Photosynthetic rate of runner plants (1)

Separated from mother plants 15 days after fixing runner tips

Time after cutting (min)

Autotrophic growth -Photosynthetic rate of runner plants (2)

Runner plants separated from their mother plants 15 days after fixing runner tips recorded the greater Pn than not separated ones.

Subsequent growth of runner plants

Growth of runner plants as affected by timing of separation from their propagules <u>15 - 30 days after fixing runner tips.</u>

Growth and propagation parameters

Growth of runner plants grown until 30 days after fixing runner tips as affected by time separated from their stock plants

	No. of	No. of	No. of Crown Leaf ar		area Maximum		Dry weight (g/plant)		
	leaves	runners	(mm)	(cm2/plant)	petioles	leaves	Stems	Roots	
S15*	4.0a	3.0a	6.7b	160.7a	106.2b	0.93a	0.43bc	0.18b	
S20	3.5ab	3.0a	7.2ab	150.5a	121.0b	0.90a	0.4c	0.19ab	
S25	3.3b	3.2a	7.7a	178.2a	146.3a	1.01a	0.49ab	0.23ab	
S30	3.2b	3.2a	7.6a	160.9a	152.7a	0.85a	0.54a	0.25a	

*Separated X days after fixing runner tips

Accumulated number of runners per propagule

Time course of accumulated number of runners for 36 days as affected by size of propagules.

Propagation cycle

Runner plant separation 15 days after runner tip fixation

Timescales for producing runner plants as affected by size of propagules.

Plant density - propagules (1)

Efficient use of the limited cultivation area of a S-PFAL

- Distance between two adjacent propagules
 - 60, 120, and 180 mm

Plant density - propagules (2)

Planting density of propagules : 44 propagules/m²

Growth of propagules as affected by planting distance between propagules for 40 days.

Planting	No. of leaves	No. of	Crown diameter	Fresh weight (g/plant)			Dry weight (g/plant)		
(mm)	(/plant)	(/plant)	(mm/plant)	Leaves	Crown	Root	Leaves	Crown	Root
60	5.8a	4.2a	10.2b	12.0a	2.1a	3.1b	3.1a	0.4a	0.4a
120	6.3a	4.3a	10.9a	13.3a	2.6a	3.3ab	3.9a	0.5a	0.4a
180	6.2a	4.5a	10.6ab	13.5a	2.7a	3.9a	3.9a	0.5a	0.5a

Planting density - runner plants (1)

Mutual shading by propagules and runner plants?

- PPF levels above propagules and runner plants
 - 100, 200, and 400 $\mu mol~m^{-2}~s^{-1}$

Planting density - runner plants (2)

Planting density of runner plants : 132 runner plants/m²

PPF		No. of loover Crown diameter		Fresh v	veight	Dry weight		
(µmol⋅m ⁻² ⋅s ⁻¹)		INU. UI leaves C	(mm)	(g / p	lant)	(g / plant)		
Pz	Ry		(1111) —	Shoot	Root	Shoot	Root	
400	400	5.0a	6.9a	8.23a	2.75a	2.47a	0.37a	
	200	4.8ab	6.6abc	7.08ab	2.14b	2.08b	0.25b	
	100	4.3bc	7.0ab	6.95abc	2.09b	1.95b	0.23b	
200	400	4.0c	6.4abc	5.79bcd	1.79bc	1.52c	0.25b	
	200	4.3bc	6.2bc	5.96bcd	2.03bcd	1.32cd	0.19bc	
	100	4.8ab	6.5abc	5.66cd	1.68bcd	1.25c	0.19bc	
100	400	5.0a	5.9cd	4.92d	1.38cde	0.91de	0.14cd	
	200	4.3bc	6.0cd	4.82d	1.49de	0.86e	0.13d	
	100	4.0c	5.3d	3.49e	0.97e	0.63e	0.09d	
Signifi	cance							
-	Р	ns	**	**	**	**	**	
	R	ns	ns	ns	ns	ns	ns	
	ΡΧR	**	ns	ns	ns	ns	ns	

^zPPF levels of propagules

^yPPF levels of runner plants

Container size for propagules (1)

- Container size (or root volume) of propagules
- 145, 73, 34 and 21 mL

Container size for propagules (2)

Container size (root volume) : 21 mL

Growth of runner plants as affected by container size grown for 35 days.

	No. of leaves (/plant)	lo. of No. of aves runners blant) (/plant)	Crown	rown Leaf meter area nmt) /plant)	Fresh weight (g/plant)				Dry weight (g/plant)			
			diameter (mmt)		Leaves	Runners	Crown + petioles	Root	Leaves	Runners	Crown + petioles	Root
145mL	6.4a ^z	3.0a	9.02a	319.3a	7.69a	9.44a	5.22b	4.02a	1.25b	1.30a	0.34a	0.62b
73mL	6.8a	2.8a	9.40a	348.2a	6.98a	7.84a	5.66ab	4.09a	1.39ab	1.20a	0.39a	0.69ab
34mL	6.6a	2.6a	9.16a	330.9a	6.97a	7.52a	5.94ab	4.19a	1.41ab	1.10a	0.34a	0.72ab
21mL	6.8a	2.4a	9.70a	379.6a	7.85a	4.32a	6.50a	4.46a	1.56a	0.71a	0.40a	0.80a

Size of propagules (crown diameter, 1)

	Crown diameter (mm)	Number of leaves (/plant)	Number of runners (/plant)
CD 4.1	4.1±0.1	1.7 ± 0.5	1.0 ± 0.0
CD 5.0	5.0 ± 0.1	2.0±0.0	1.9 ± 0.3
CD 6.0	6.0 ± 0.1	3.0±0.0	2.3±0.3

CD 4.1

CD 6.0

CD 5.0

Size of propagules (crown diameter, 2)

Time course of accumulated number of runner plants as affected by crown diameter of propagules for 90 days after transplanting propagules

Size of propagules (crown diameter, 3)

Crown diameter of propagule: 5.0 mm

Yearly production of runner plants

Software flowchart for simulating production

Simulation program

Simulation - initial number of propagules

cultivation area of 3.6 m²

Simulation - cultivation area

from 9 propagules

Operation flow of ATPM in S-PFAL

ca. 40 days to produce THREE propagules and ONE transplants from a propagules

Electric consumption

Simulated number of runner plants produced from 10 propagules for one year, electric consumption, and electric charge to produce runner plants

PPF	Number of	Electric con	Electricity cost		
(µmol m ⁻² s ⁻¹)	runner plants ^z	In a CTPS (MWh) ^y	Per runner plant (kWh) ^x	(KRW) ^w	
150	10,638	15.8	1.5	58.3	
190	11,270	22.3	2.0	77.5	
240	12,094	28.9	2.4	93.7	
300	13,058	36.0	2.8	108.1	

^zSimulated number of runner plants produced from 10 propagules in the 9 m² CTPS (cultivation area: 11.52 m²) for a year. ^yElectric consumption for operating a CTPS for a year as affected by number of fluorescent lamps.

*Electric consumption to produce a runner plant. Electric consumption of lighting was presumed 75% of total electric consumption to operate a CTPS

"Electric charge of electric consumption to produce a runner plant, 39.2 won/kWh.

White LEDs as artificial light sources for a S-PFAL

 Phosphor types of white LEDs are produced by adding phosphors to the blue LED to convert a portion to green, yellow and red having different correlated color temperatures (CCT)

(Zhao et al., 2002)

Growth of runner plants grown under LEDs having different correlated color temperature (CCT)

Shortened propagation cycle by adapting LEDs

Greater system productivity with reduced electricity cost

Storage of transplants produced in a S-PFAL

Acclimation at 5°C before long-term cold storage

1 week

2 weeks

3 weeks

4 weeks

Light acclimation after long-term cold storage

Light acclimation at 100 µmol·m⁻²·s⁻¹ for 2 days

Survival rate of runner plants 2 days after transplanting as affected by light condition (100 µmol·m⁻²·s⁻¹) after transplanting.

- Strawberry transplants could be rapidly produced using <u>ATPM in a S-PFAL</u> year round and proper storage conditions before being transplanted for fruit production or transplant production were determined.
- S-PFALs have been installed on a trial basis at research agencies where nuclear stocks of major domestic cultivars are maintained.
- The trials were satisfactory, and so scaling-up is currently being reviewed for producing <u>elite and pre-basic transplants</u> in 'the Korean national program for strawberry propagation'.

Special Thanks to; Prof. Sung Kyeom Kim Ms. Miseon Jeong Ms. Hyein Lee

Thank you berry much! changhoo@snu.ac,kr