Fruit Tree Research Using Chlorophyll Fluorescence Measurement Techniques

Hee Jae Lee and Duk Jun Yu Department of Plant Science Seoul National University

Photosynthesis

- Process of converting light energy to chemical energy in the chloroplast
- \checkmark Essential for maintaining all forms of life on the earth

Usefulness of photosynthesis measurement

- Analysis of plant productivity in agriculture, forestry, ecology, etc.
- S Research on responses to environmental factors
 - Sensitive to environmental changes
 - Light, temperature, water, herbicides, salt, etc.
 - Rapid response
 - Non-destructive in measurements

Photosynthesis outline

Measurement methods of photosynthesis

- \mathcal{S} CO₂ exchange
 - Infrared gas analyzer (IRGA), titration, electrical conductivity
- \mathcal{S} O₂ exchange
 - O₂ electrode (liquid and gaseous phases)
- S Photosystem II (PSII) activities
 - Chlorophyll (Chl) a fluorescence

🗴 Others

- ¹⁴CO₂ exchange, dry weight

When light energy is absorbed by PSII, the energy is;

- \checkmark Used in photosynthesis
- \checkmark Emitted as heat
- \checkmark Reemitted as light in the form of fluorescence

Fate of light energy

Chl a fluorescence (F)

- S Reemission of absorbed light energy at longer wavelength primarily from PSII Chl a molecule
- S One method of energy dissipation
- Derived mainly from the antenna of PSII at room temperature
- S Complementary to the photochemistry (P) and heat dissipation (H)
 - P and H $\uparrow \rightarrow$ F \downarrow
 - P and H $\downarrow \rightarrow$ F \uparrow

PSII

- \checkmark Light harvesting complex + reaction center
- S Chlorophyll (Chl), carotenoid (Car), protein
- ✓ Light energy absorption and electron transport
- S Activity changes under various PPF conditions

At high PPF or excessive excitation energy, P decreases while H and F increase

Chl a fluorescence measurement

- S Reflection of PSII activity
 - Photochemical efficiency
 - Heat dissipation
- Simple, rapid, and non-destructive in measurement
- Useful for studying metabolism of the chloroplast and for examining physiological responses of plants to various environmental stresses

De-excitation pathways of absorbed energy by Chl

Fluorescence emission ∞ the average lifetime of ¹Chl*

Relationship among de-excitation pathways of the absorbed energy by Chl

At a saturation light intensity, P = 0, $F = F_m$, $H = H_m$

$$F_{m} + H_{m} + 0 = 1$$

If we also assume that the ratio of heat to fluorescence de-excitation does not change

At non-saturating light conditions and

If the non-saturating light conditions is total darkness, and the leaf is completely adapted to the darkness

Where F_o is known as "minimal fluorescence" measured by measuring light.

By contrast, if the non-saturating light is non-zero, and the leaf is completely adapted to it

 P_{light} = actual quantum yield = Φ_{PSII}

Where F_s is "steady-state" fluorescence, and F_m ' is the maximal fluorescence during a saturating light flash

Where α_{leaf} is leaf absorptance. f is the fraction of absorbed quanta that is used by PSII, and is typically assumed to be 0.5 for C₃ plants, and 0.4 for C₄ plants.

Chl a fluorescence parameters

- \mathcal{S} Maximal fluorescence (F_m)
 - The greatest yield of fluorescence when all of the primary electron acceptor (Q_A) of PSII are fully reduced and unable to extract energy from the active centers of PSII
 - Indicates the number of available PSII reaction centers
 - Blocked reaction center
 - Lower F_m in stressed leaves
- \mathcal{S} Minimal fluorescence (F_o)
 - The lowest yield of fluorescence when all of the primary electron acceptor (Q_A) of PSII are fully oxidized in the dark adapted state
 - Open reaction center
 - Higher F_o in stressed leaves

Chl a fluorescence parameters

- Solution Variable fluorescence (F_v)
 - $F_m F_o$
 - Functional capacity of PSII photochemistry centers
 - Depends on the optical properties of leaves

S F_v/F_m ratio

- Uses F_m as an internal standard
- Indicates efficiency of electron capture by open PSII reaction centers for monitoring the physical state of photosynthetic apparatus
- When excessive light energy is efficiently dissipated through photochemical processes, $F_{\rm v}/F_{\rm m}$ ratio should be high.
- When reaction centers are impaired, F_v/F_m ratio decreases.

Measurements of Chl a fluorescence parameters

- ✓ F_m: maximal fluorescence of PSII reaction center in dark-adapted state

- \mathcal{S} F_t or F_s: actual fluorescence at any time or steady state

PAM series

Fluorescence quenching (Kautsky curve)

O: maximally oxidized Q_A , O~I: reduction of Q_A , I~D: oxidation of Q_A by electron transport from Q_A to Q_B , D~P: Reduction of Q_A and PQ pool, P: highly reduced PQ pool and Q_A , P~S: Induction of CO₂ assimilation and heat loss

Measurement of Chl a fluorescence

PAM-2000

Measuring light

- $< 1 \mu$ mol photon m⁻² s⁻¹ from LEDs (intensity 0-10; e.g., 3, appropriate Ft value 0.3-0.4)
- S Negligible effect on the leaf's photosynthetic rate
- Solution To measure minimal fluorescence (F_o or F_o') of PSII reaction center (fully opened)
- S Modulation: 0.6, 20 kHz

Actinic light

- S From LEDs and a halogen lamp
- Sto drive photosynthesis as a light source
- \mathcal{S} To measure F_t (F_s) at any time

Saturation pulse

- S > 7,000 μ mol photon m⁻² s⁻¹ from LEDs and a halogen lamp (intensity 0-10; e.g., 8)
- ✓ For 0.2-2 s to prevent the leaf from high light damage (e.g., 0.8 s)
- Solution To measure maximal fluorescence (F_m or F_m') of PSII reaction center (fully closed)

Far-red light

- Srom far-red LED (intensity 0-10; e.g., 8)
- S For 3-6 s as actinic light turn off briefly
- Stomake PSII reaction center open by draining electrons from PSII
- Solution To measure minimal fluorescence of a light adapted leaf (F_{o}')

Parameters of PSII activities

- S Photochemistry
 - Maximum (potential) quantum yield of PSII

 $F_v/F_m = (F_m-F_o)/F_m$, dark-adapted state $F_v'/F_m' = (F_m'-F_o')/F_m'$, light-adapted state

- Actual quantum yield of PSII, $\Phi_{PSII} = (F_m' F_s)/F_m'$
- Electron transport rate, ETR = $\Phi_{PSII} \times 0.5 \times PPF \times 0.84$

- Non-photochemical quenching

$$NPQ = (F_m - F_m')/F_m', qN = (F_m - F_m')/(F_m - F_o')$$

Suggestions for acute measurement and evaluation

- Sufficient equilibration time
- Different level of Chl a fluorescence from PSI depending on plant species
- Setting of measuring light intensity: F value 0.3-0.4
- Setting of saturation pulse intensity (e.g., 0.8 s and 8)
- Fluorescence measurements derived mainly from the chloroplasts closest to upper layers in a leaf are not considered as representative of the entire sample (thick leaves)

F_v/F_m measurement using a dark leaf clip

 F_v/F_m

Φ_{PSII} and ETR using a leaf-clip holder 2030-B

Applications of Chl a fluorescence measurement

- S Evaluation of factors influencing fluorescence induction and photochemical efficiency
- Screening of plants for tolerance to specific environmental or induced conditions
- S Evaluation of environmental stress effects on photochemical efficiency

